The sum of n terms of m arithmetical progressions are S1,S2,S3,_______Sm. The first term and common differences are 1,2,3,_____m respectively. Prove that S1+S2+S3+_______+Sm=14mn(m+1)(n+1).
Open in App
Solution
S1=(n/2)[2.1+(n−1)1], S2=(n/2)[2.2+(n−1).2] Sm=(n/2)[2.m+(n−1).m]. ∴S1+S2+...+S3 =n(1+2+3+...m)+n(n−1)2.(1+2+3+...m). =m(m+1)2[n+n2−n2] =m(m+1)2⋅n(n+1)2=14mn(m+1)(n+1). Here we have used 1+2+3+...+m=(m/2)[1+m] i.e., S=(n/2)[a+l].