The correct option is A n2(n+1)2
For odd, let n=2m+1
⇒S2m+1=S2m+(2m+1)thterm ...(1)
Also, given that S2m=2m(m+1)22.
Since, n=2m+1
⇒2m=n−1
So, S2m=(n−1)(n−1+1)22
⇒S2m=(n−1)n22 ...(2)
Also, the odd terms of the given series are 32,52,...etc.
⇒(2m+1)thterm=(2m+1)2
⇒(2m+1)thterm=n2 ...(3)
Now, substitute (2) and (3) in (1); we get
S2m+1=(n−1)n22+n2
⇒S2m+1=n3−n2+2n22
⇒S2m+1=n3+n22
⇒S2m+1=n2(n+1)2