Re-arrange suitably and find the sum in each of the following :
(i)1112+−173+112+−252
(ii)−67+−56+−49+−157
(iii)35+73+95+−1315+−73
(iv) 413+−58+−813+913
(v)23+−45+13+25
(vi) 18+512+27+712+97+−516
Prove that:(i) 13+√7+1√7+√5+1√5+√3+1√3+1=1(ii) 11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2
Verify the following :
(i) 37×(56+1213)=(37×56)+(37×1213) (ii) −154×(37+−125)=(−154×37)+(−154×−125) (iii) (−83+−1312)×56=(−83×56)+(−1312×56) (iv) −167×(−89+−76)=(−167×−89)+(−167×−76)
Using commutativity and associativity of addition of rational numbers, express each of the following as a rational number:
(i) 25+73+−45+−13
(ii) 37+−49+−117+79
(iii) 25+83+−1115+45+−23
(iv) 47+0+−89+−137+1721