The correct option is A 3
(x−1)(x−2)(3x−1)(3x−2)=8x2⇒(x−1)(3x−2)(x−2)(3x−1)=8x2⇒(3x2−5x+2)(3x2−7x+2)=8x2⇒(3x+2x−5)(3x+2x−7)=8
Assuming 3x+2x−5=t
⇒t(t−2)=8⇒t2−2t−8=0⇒(t−4)(t+2)=0⇒t=−2,4
When t=−2
3x+2x−5=−2⇒3x2−3x+2=0D=9−24<0
No real roots.
When t=4
3x+2x−5=4⇒3x2−9x+2=0D=81−24>0
Real and distinct roots.
Therefore,
The sum of real roots =93=3