The correct option is D 5π2+tan−1(125)
sin2x−5sinxcosx+2=0
As cosx≠0, dividing by cos2x, we get
⇒tan2x−5tanx+2sec2x=0⇒3tan2x−5tanx+2=0⇒3tan2x−3tanx−2tanx+2=0⇒(3tanx−2)(tanx−1)=0⇒tanx=1,23
As x∈[0,2π], so
⇒x=π4,5π4,tan−123,π+tan−123
Hence, the sum of roots
=5π2+2tan−1(23)=5π2+tan−1431−49=5π2+tan−1(125)