We have,
sin−13x5+sin−14x5=sin−1x, x∈[−1,1]
Using the formula:
{sin−1x+sin−1y=sin−1{x√1−y2+y√1−x2}}
⇒sin−1{3x5√1−16x225+4x5√1−9x225}=sin−1x
⇒3x√25−16x2+4x√25−9x2=25x
⇒x=0 or, 3√25−16x2+4√25−9x2=25
Now,
3√25−16x2+4√25−9x2=25
⇒4√25−9x2=25−3√25−16x2
⇒16(25−9x2)=625+9(25−16x2)−150√25−16x2
⇒150√25−16x2=450
⇒25−16x2=9⇒x=±1
Hence, x=1,0,−1 are roots of the given equation.
∴ Sum of roots =0