The correct option is B 99⋅2101+2
Let us denote the given series by S.
Let S=1⋅2+2⋅22+3⋅23+…+100.2100 …(1)
⇒2S=1⋅22+2⋅23+…+99⋅2100+100⋅2101 …(2)
On subtracting, we get
⇒−S=2+22+23+…+2100−100⋅2101
⇒−S=2(2100−12−1)−100⋅2101
⇒S=−2101+2+100⋅2101⇒S=2+99⋅2101