The correct option is A 4+3x+x2(1+x)3
Let
S=4−9x+16x2−25x3+36x4−49x5+…∞
xS=4x−9x2+16x3−25x4+36x5−…∞
On adding, we get
S(1+x)=4−5x+7x2−9x3+11x4−13x5+…∞
=4−x[5−7x+9x2−11x3+...∞]
Since, 5−7x+9x2−11x3+...∞ is AGP with a=5, d=2, r=−x
⇒S(1+x)=4−x[5x1+x+2(−x)(1+x)2]
⇒S=4+3x+x2(1+x)3
Alternate Solution:
Let
S=4−9x+16x2−25x3+36x4−49x5+…∞
xS=4x−9x2+16x3−25x4+36x5−…∞
On adding, we get
S(1+x)=4−5x+7x2−9x3+11x4−13x5+…∞
S(1+x)x=4x−5x2+7x3−9x4+11x5−…∞
On adding, we get
S(1+x)2=4−x+2x2−2x3+2x4−2x5+…∞
⇒S(1+x)2=4−x+2x2(1−x+x2−…∞)
⇒S(1+x)2=4−x+2x21+x=4+3x+x21+x
⇒S=4+3x+x2(1+x)3