The sum of series 12!+14!+16!+..... is
Given,
to find out the sum of series,
12!+14!+16!+…….
as we know that,
ex=1+x1!+x22!+x33!+x44!+x55!+……
e−x=1−x1!+x22!−x33!+x44!−x55!+……
let us assume x as ′1′ in both ex & e−x equations we get,
e1=1+11!+22!+33!+44!+……
⇒e=1+1+12!+13!+14!+…..
⇒e=2+12!+13!+14!+…..(3)
Similarly
e−1=1−11!+12!−13!+14!−15!+…..
⇒12!−13!+14!−15!+…..(4)
Now, let us add eq (3) & eq (4) we get,
e+1e=[2+12!+13!+14!+15!….]+[12!−13!+14!−15!+…..]
⇒[2+22!+24!+26!+….]
⇒e+1e=2[1+12!+14!+16!+…..]
⇒1+12!+14!+16!+…..=12[e+1e]
⇒12!+14!+16!+…..=12[e+1e]−1
Now, R.H.S= 12[e+1e]−1
⇒12[e2+1e]−1⇒e2+12e−1
[∵a2−2ab+b2=(a−b)2]
⇒e2+1−2e2e⇒e2−2.e.1+(1)22e⇒(e−1)22e
∴12!+14!+16!+…..=(e−1)22e