The sum of series 34+1516+6364+..... up to n terms is
For n=1, we have
n−4n3−13=1−43−13=−23
n+4n3−13=1+43−13=2
n−4−n3+13=1−4−13+13=54
Also, for n=2, we have
n+4−n3−13=2+148−13=2716 and 34+1516=2716
Hence, option (b) is correct.
ALTER We have,
34+1516+6364+..... to n terms
=22−122+24−124+26−126+.... to n terms.
=(1−122)+(1−124)+(1−126)+..... to n terms
=n−{122+124+126+....to n terms}
=n−122⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩1−(122)n1−122⎫⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪⎭
=n−13(1−4−n)
=n+4−n3−13