The correct option is C −11π30
cosx1+sinx=|tan2x|, x∈(π2,π2)−{π4,−π4}
If x∈(0,π4), then cosx1+sinx=2tanx1−tan2x
⇒cosx1+sinx=2sinx⋅cosxcos2x−sin2x
⇒cos2x−sin2x=2sinx+2sin2x (∵cosx≠0)
⇒4sin2x+2sinx−1=0
∴sinx=√5−14,−√5−14 (Not applicable)
∴x=π10⋯(i)
If x∈(−π2,−π4), then again
sinx=√5−14,−(√5+14)
∴x=−3π10⋯(ii)
If x∈ (π4,π2)∪(−π4,0), then
1−2sin2x=−2sinx−2sin2x
∴sinx=−12
∴x=−π6⋯(iii)
∴ Sum of solution =π10−3π10−π6=−11π30