Equation of tangent to the curve y=f(x) at (x,y) is
Y−y=dydx(X−x)
The length of the perpendicular from (0,1) to the tangent is,
D1=∣∣
∣∣1+xy′−y√1+(y′)2∣∣
∣∣
where y′=dydx
The length of the perpendicular from (0,−1) to the tangent is,
D2=∣∣
∣∣−1+xy′−y√1+(y′)2∣∣
∣∣
Given, D21+D22=2
⇒2+2x2y′2+2y2−4xyy′=2(1+y′2)⇒x2y′2+y2−2xyy′=y′2⇒(dydx)2(x2−1)−2xy(dydx)+y2=0⇒dydx=2xy±√4y22(x2−1)=xy±yx2−1⇒dyy=(x±1)dxx2−1
Case 1: Taking positive sign
dyy=dxx−1
⇒y=eC1(x−1)
Case 2: Taking negative sign
dyy=dxx+1
⇒y=eC2(x+1)
So, f(x)=0 will have two roots i.e., x=−1,1