Let a and d be the first term and common difference of A.P
nth term of A.P., an=a+(n−1)d
∴a3=a+(3−1)d=a+2da7=a+(7−1)d=a+6dGiven,a3+a7=6∴(a+2d)+(a+6d)=6⇒2a+8d=6⇒a+4d=3……(1)Given,a3×a7=8∴(a+2d)+(a+6d)=8⇒(3−4d+2d)(3−4d+6d)=8[Using(1)]⇒(3−2d)(3+2d)=8⇒9−4d2=8⇒4d2=1⇒d2=14⇒d=±12a=3−4d=3−4×12=3−2=1When d=−12,a=3−4d=3−4×(−12)=3+2=5
Whena = 1 and
d=12,S16=162[2×1+(16−1)×(−12)]=8(10−152)=4×5=20
Thus, the sum of first 16 terms of the A.P is 76 or 20.