The correct option is C cos−1(1√3)−π4
f(x)=tan−1(sinx−cosx)
Let g(x)=sinx−cosx
=√2sin(x−π4) and x−π4∈[−π4,3π4]
∴g(x)∈[−1,√2]
and tan−1x is an increasing function
∴f(x)∈[tan−1(−1),tan−1√2]
∈[−π4,tan−1√2]
∴ Sum of fmax and fmin=tan−1√2−π4
=cos−1(1√3)−π4