Solution :-
Sum of coefficients of the first three terms of (x−3x2)m
Now we know (- in the expansion (a+b)n,
the general term is Tr+1=nCran−rbr
In expansion (x−3x2)m, general term is Tr+1=mCrxm−r(−3x2)r
Now, first 3 terms are T1,T2 and T3
T1=mC0xm(−3x2)0=xm
T2=mC1xm−1(−3x2)1=−3mC1xm−3=−33C1
T3=mC2(x)m−2(−3x2)2=mC2xm−2((−3)2x4)=9mC2.xm−6
=9mC2
Now given that, sum of first three = 559
1−3mC1+9mC2=559
⇒1−3×m!1!(m−1)!+9×m!(m−2)!2!=559
⇒1−3m+92m(m−1)=559
⇒2−6m+9m2−9m=559×2
⇒9m2−15m−1116=0
⇒(3m+31)(m−12)=0
⇒m=−313 and m=12
∵m is natural number ∴m=12
Now, We need the coefficient of x3
Tr+1=mCrxm−r(−3x2)r=12Crx12−r(−3x2)r=12Cr.(−3)r.x12−3r
We need x3, ∴x3=x12−3r⇒r=3
Hence, the term containing x3
Tr+1=12Cr.(−3)r.x12−3r
T3+1=12C3.(−3)3x12−9
=12!6!3!×−27×x3
T4=−5940x3