The Sum of the coefficients in (x+2y+z)10 is:
In Binomial expansion,
(x+y)n=nc0xn+nc1xn−1y+nc2xn−2y2+....+ncnyn
To get the sum of the coefficients, put x=y=1
⇒(1+1)n=nc0(1)n+nc1(1)n−1(1)+nc2(1)n−212+....+ncn(1)n
⇒2n=nc0+nc1+nc2+....+ncn
Now, To get the sum of the coefficients, in (x+2y+z)10
put x=y=z=1
=(1+2(1)+1)10
=410
Hence, Option D is correct.