The correct option is D 12(340+1)
(1+2√x)40=40C0+40C1(2√x)+40C2(2√x)2+⋯+40C40(2√x)40 ⋯(1)
The coefficients of integral powers of x are
40C0,40C2⋅22,40C4⋅24,…,40C40⋅240
Now, (1−2√x)40
=40C0−40C1(2√x)+40C2(2√x)2+⋯+40C40(2√x)40 ⋯(2)
Adding equations (1) and (2), putting x=1, we get
(3)40+1=2[40C0+40C2⋅22+40C4⋅24+⋯+40C40⋅240]
∴ Required sum =340+12