The sum of the coefficients of the first three terms in the expansion of (x−3x2)m,x≠0m being a natural number is , 559. Find the term of the expansion containing x3
A
-5940
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1010
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1001
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1002
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A -5940 (x−3x2)m=mCo(x)m(−3x2)0+mC1(x)m−1(−3x2)1+mC2xm−2(−3x2)2+......=mCo(x)m+(−3)mC1(x)m−1−2+9.mC2(x)m−2−4+....⇒mCo+(−3)mC1+9.mC2=559⇒1−3m+9m(m−1)2=559⇒2−6m+9m2−9m=2×559=1118⇒9m2−15m−1116=0⇒3m2−15m−372=0⇒3m2−36m+31m−372=0⇒3m(m−12)+31(m−12)=0⇒(m−12)(3m+31)=0∴m=12,andm=−313(doesnotexist)so,wetakem=12(x−3x2)12ThenTr+1=12Crx12r(−3x2)r=(−1)r3r12Crx12−r−25=(−1)r3r12Crx12−3rContaingx312−3r=0∴r=3Now,T4=T3+1=(−1)33312C3x3=−2712C3x3T4=−5940x3