Let the tens and the units digits of the required number be x and yā, respectively.
Required number = (10x + y)
x + y = 12 ....(i)
Number obtained on reversing its digits = (10y + x)
∴ (10y + x) − (10x + y) = 18
⇒ 10y + x − 10x − y = 18
⇒ 9y − 9x = 18
⇒ y − x = 2 ....(ii)
On adding (i) and (ii), we get:
2y = 14
⇒ y = 7
On substituting y = 7 in (i), we get:
x + 7 = 12
⇒ x = (12 − 7) = 5
Number = (10x + y) = 10 × 5 + 7 = 50 + 7 = 57
Hence, the required number is 57.