wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The sum of the digits of a two-digit number is 12. The number obtained by interchanging its digits exceeds the given number by 18. Find the number.

Open in App
Solution

Let the tens and the units digits of the required number be x and yā€‹, respectively.
Required number = (10x + y)
x + y = 12 ....(i)
Number obtained on reversing its digits = (10y + x)
∴ (10y + x) − (10x + y) = 18
⇒ 10y + x − 10x − y = 18
⇒ 9y − 9x = 18
⇒ y − x = 2 ....(ii)
On adding (i) and (ii), we get:
2y = 14
⇒ y = 7
On substituting y = 7 in (i), we get:
x + 7 = 12
⇒ x = (12 − 7) = 5
Number = (10x + y) = 10 × 5 + 7 = 50 + 7 = 57
Hence, the required number is 57.

flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basics Revisted
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon