Let Sn be the sum of n terms of an AP with first term a and common difference d. Then
Sn=n2(2a+(n−1)d)
putting n=5 in Sn, we get
S5=52(2a+4d)⇒S5=5(a+2d) ...(1)
putting n=7 in Sn, we get
S7=72(2a+6d)⇒S7=7(a+3d) ...(2)
Adding (1) and (2), we get
12a+31d=167 ...(3)
Now,S10=235⇒102(2a+9d)=235
⇒2a+9d=47 ...(4)
On applying 6×(4)−(3), we get
23d=115⇒d=5
Putting d=5 in (3), we get
12a=167−31×5⇒a=1
Therefore, Required sum S20=202[2×1+(20−1)×5
⇒S20=10[2+95]
⇒S20=970