The sum of the first p terms of an A.P is q and the sum of the first q terms is p. The sum of the first (p + q) terms is
-(p + q)
Let a, a + d, a + 2d, ….. be the A.P.
Sp=q⇒p2[2a+(p−1)d]=q . . . .(1)
Sq=p⇒p2[2a+(q−1)d]=p . . . .(2)
(1)−(2)⇒(p−q)2(2a−d)+d2(p2−q2)=q−p
⇒2a−d2+(p+q)d2+=−cancelling p−q
or, 2a+(p+q−1)d=−2 .... (3)
Now Sp,q=(p+q)2[2a+(p+q−1)]=(p+q)2×(−2)=−(p+q)