The correct option is C 10538
Let the G.P. be a,ar,ar2,...
Now, a(1+r+r2)=6 ...(1)
a(1+r2+r4)=10.5 ...(2)
Dividing eqn (2) by eqn (1), we get
a(1+r2+r4)a(1+r+r2)=10.56=74
⇒1+2r2+r4−r2(1+r+r2)=74
⇒(1+r2)2−r2(1+r+r2)=74
⇒(1+r+r2)(1−r+r2)(1+r+r2)=74
⇒1−r+r2=74
⇒4r2−4r−3=0
⇒(2r+1)(2r−3)=0
r=−12 or r=32
If r=−12⇒a=8
If r=32⇒a=2419
∴a+r=152 or a+r=10538