The correct option is A 1+x(1−x)3
Let S∞=1+22x+32x2+42x3+....∞
S∞=1+4x+9x2+16x3+....∞ .... (1)
∴xS∞=0+x+4x2+9x3+....∞ .... (2)
Subtracting (2) from (1), we get
(1−x)S∞=1+3x+5x2+7x3+....∞ .... (3)
Again x(1−x)S∞=0+x+3x2+5x3+....∞ .... (4)
Subtracting (4) from (3), we get
(1−x)(1−x)S∞=1+2x+2x2+2x3+....∞
(1−x)2S∞=1+2x1−x =1+x1−x
⇒S∞=(1+x)(1−x)3
Hence, option 'A' is correct.