The sum of the infinite series 1+23+732+1233+1734+2235+…. is equal to
94
156
136
116
The explanation for the correct option:
Given, 1+23+732+1233+1734+2235+…
Let sum be S
⇒S=1+23+732+1233+1734+2235+…..∞...(1)⇒S3=13+232+733+1234+..........∞...(2)
Subtracting (2) from (1)
⇒2S3=1+13+532+533+.........∞⇒2S3=43+532+533+.........∞
Here, the first term of the G.P.=532
The common ratio=13
⇒2S3=43+5321-13SumoftheinfiniteGP=a1-r⇒S=43+56=136
Hence, the correct option is (C).