The sum of the infinite series 1+3x+4x2+10x3+18x4+.... at x=13 is
S=1+3x+4x2+10x3+18x4+.... ---------- (1)
2x×S=2x+6x2+8x3+20x4+.... ----------- (2) --- multiplying by 2x
Subtracting (2) from (1), we get
=(1−2x)S=1+x−2x2(1−x+x2−x3.....)
=(1−2x)S=(1+x)2−2x21+x [since 0<x<1 and sum of infinite series]
Now substituting x=13 we get S=72