The sum of the infinite series222!+244!+266!+… is equal to
(e2+1)2e
(e4+1)2e2
(e2-1)22e2
None of these
Explanation for the correct option:
Given: 222!+244!+266!+…
We know, ex=1+x1!+x22!+x33!+x44!+…
Put, x=2
e2=1+21!+222!+233!+244!+….....(1)
Put, x=-2
e-2=1-21!+222!-233!+244!+….....(2)
Adding (1) and (2)
⇒e2+e-2=21+222!+244!+266!+....⇒e2+e-22=1+222!+244!+266!+....⇒e2+e-22-1=222!+244!+266!+....⇒e2+e-2-22=222!+244!+266!+....⇒e2-122e2=222!+244!+266!+....
Hence, the correct option is C.
The sum of the infinite series 1+23+732+1233+1734+2235+…. is equal to