S=32+1522+3523+6324+....∞ --- ( 1 )
S2=0+322+1523+3524+6325+....∞ ----- ( 2)
Subtracting ( 2 ) from ( 1 ),
S−S2=32+1222+2023+2824+....∞
S2=32+4[322+523+724+....∞]
Let X=322+523+724+....∞ ---- ( 3 )
X2=0+323+524+725+...∞ ---- ( 4 )
Subtracting ( 4 ) from ( 3 ) we get,
X2=322+223+224+225+....∞
X2=34+2⎡⎢
⎢
⎢
⎢⎣1231−12⎤⎥
⎥
⎥
⎥⎦
X2=34+2⎡⎢
⎢
⎢⎣1812⎤⎥
⎥
⎥⎦
X2=34+12
X2=54
X=52
Now,
S2=32+4X
⇒ S2=32+4X
⇒ S2=232
∴ S=23