The sum of the infinite series
[1+√2−12√2+3−2√212+5√2−724√2+17−2√280+...∞] is a−1b(√c+1)loge2
Find (a+b)2+c2
Let √2−1√2=x
Then x2=(√2−1)2(√2)2.
=(3−2√22);
x3=(√2−1√2)3=5√2−72√2;
x4=(√2−1√2)4=17−12√24 and so on.
∴ Given series
=1+12x+16x2+112x3+120x4+....
=1+(1−12)x+(12−13)x2+(13−14)x3+(14−15)x4+...
=(1−x2−x23−x34...)+(x+x22+x33+x44+...∞)
=1x(x−x22−x33−x44−...∞)−loge(1−x)
=1x(2x−x−x22−x33−x44−...)−loge(1−x)
=1x[2x+loge(1−x)]−loge(1−x)
=2+1xloge(1−x)−loge(1−x)
=2+(1x−1)loge(1−x)
Putting x=√2−1√2
=2+(√2√2−1−1)loge(1−√2−1√2)
=2+(1√2−1)loge(1√2)
=2+(√2+1)loge2−1/2
=2−12(√2+1)loge2
⇒(a+b)2+c2=20