The correct option is C π2
We have,
sin−11√2+sin−1(√2−1√6)+sin−1(√3−√2√12)+⋯+sin−1(√n−√n−1√n(n+1))
Now, Tn=sin−1(√n−√n−1√n(n+1))
=sin−1(1√n+1−√n−1√n+1√n)
=sin−1⎡⎢⎣1√n
⎷1−(1√n+1)2−1√n+1
⎷1−(1√n)2⎤⎥⎦
Using the formula:
[sin−1x−sin−1y=sin−1(x√1−y2−y√1−x2)]
=sin−11√n−sin−11√n+1
T1=sin−11−sin−11√2
T2=sin−11√2−sin−11√3
⋮ ⋮ ⋮
Tn=sin−11√n−sin−11√n+1
Adding all the terms, we get
Sn=sin−11−sin−11√n+1
∴S∞=π2−0=π2