The correct option is B tan−12
Let Sn=cot−1(12+34)+cot−1(22+34)+cot−1(32+34)+⋯
Tn=cot−1(n2+34)=tan−1⎛⎜
⎜
⎜⎝1n2+34⎞⎟
⎟
⎟⎠
=tan−1⎛⎜
⎜
⎜
⎜⎝11+(n2−14)⎞⎟
⎟
⎟
⎟⎠
⇒Tn=tan−1⎛⎜
⎜
⎜
⎜⎝11+(n−12)(n+12)⎞⎟
⎟
⎟
⎟⎠
⇒Tn=tan−1⎛⎜
⎜
⎜
⎜⎝(n+12)−(n−12)1+(n−12)(n+12)⎞⎟
⎟
⎟
⎟⎠
⇒Tn=tan−1(n+12)−tan−1(n−12)
Now, Sn=∞∑n=1Tn=∞∑n=1{tan−1(n+12)−tan−1(n−12)}
=tan−1(32)−tan−1(12)+tan−1(52)−tan−1(32) +tan−1(72)−tan−1(52)⋯+tan−1(∞)
=tan−1(∞)−tan−1(12)
=π2−tan−1(12)
=cot−1(12)=tan−1(2)