The correct option is B tan−1(2)
cot−1(12+34)+cot−1(22+34)+.....
Let tn=cot−1(n2+34)
=tan−1(1n2+34)
=tan−1(11+(n2−14))
=tan−1(11+(n+12)(n−12))
=tan−1((n+12)−(n−12)1+(n+12)(n−12))
=tan−1(n+12)−tan−1(n−12)
So, Sn=tan−1(32)−tan−1(12)+tan−1(52)−tan−1(32)+......+tan−1(n+12)−tan−1(n−12)
Sn=tan−1(n+12)−tan−1(12)
S∞=limn→∞Sn
=limn→∞tan−1(n+12)−tan−1(12)
=π2−tan−1(12)
=cot−112=tan−12