The correct option is B 6
x4−5x3+6x2−5x+1=0
Divide by x2,x2−5x+6−5x+1x2=0(x2+1x2)−5(x+1x)+6=0
Put x+1x=t ∴t2−2−5t+6=0
⇒t2−5t+4=0
⇒t=4,t=1
x+1x=4, or x+1x=1
x2−4x+1=0 or x2−x+1=0
x=4±√16−42=2±√3 or x=1±√1−42=12±i√32
Sum of the moduli of the root 2+√3+2−√3+2√(14+34)=4+2=6