The sum of the nterms of the series 121+(12+22)(1+2)+(12+22+32)(1+2+3)+…. is
(n+1)(n+2)3
n(n+2)3
n(n+1)3
none of these
Find the sum of the given series
121+(12+22)(1+2)+(12+22+32)(1+2+3)+….
Therefore, tn=12+22+32+......+n2(1+2+3+....n)
=n(n+1)(2n+1)6n(n+1)2=2n+13
Sum of the series
=∑r=1n2n+13=23n(n+1)2+n3=n(n+2)3
Hence, the correct option is OptionB.