Let Sm and Sn the sum of the m and n terms of the A.P. respectively
Sm=m2[2a+(m−1)d]Sn=n2[2a+(n−1)d]
Here, a is the first terms and d is the common difference.
SmSn=m2n2
∴m2[2a+(m−1)d]n2[2a+(n−1)d]=m2n2⇒m[2a+(m−1)d]n[2a+(n−1)d]=m2n2⇒2a+(m−1)d2a+(n−1)d=mn
⇒[2a+(m−1)d]n=[2a+(n−1)d]m⇒2an+(m−1)dn=2am+(n−1)dm⇒d[(m−1)n−(n−1)m]=2am−2an⇒d(mn−n−nm+m)=2a(m−n)⇒d(m−n)=2a(m−n)⇒d=2a
Now,
tm=a+(m−1)dtn=a+(n−1)dtmtn=a+(m−1)2aa+(n−1)2a=a[1+2(m−1)]a[1+(n−1)]=1+2m−21+2n−2=2m−12n−1
Thus, mth term: nth