The sum of the roots of the equation, x+1−2log2(3+2x)+2log4(10−2−x)=0, is
A
log214
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
log213
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
log211
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
log212
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Clog211 x+1−2log2(3+2x)+2log4(10−2−x)=0 ⇒x+1−2log2(3+2x)+2log2(10−2−x)log24=0 ⇒x+1+log2(10−2−x)−log2(3+2x)2=0 ⇒x+1−log2((3+2x)210−2−x)=0 ⇒2x+1=9+6⋅2x+22x10−2−x ⇒20⋅2x−2=9+6⋅2x+22x ⇒(2x)2−14(2x)+11=0
Let two roots be 2x1 and 2x2
Then product of the roots: 2x1⋅2x2=11⇒2x1+x2=11⇒x1+x2=log211 ∴ Sum of roots =log211