x+1=2log2(2x+3)−2log4(1980−2−x)
x+1=2log2(2x+3)−log2(1980−2−x)
⇒x+1=log2(2x+3)2(1980−2−x)
2x+1=(2x+3)2(1980−2−x)
⇒22x−39542x+11=0
Substitute 2x=t
⇒t2−3954t+11=0
Let t1,t2 be the roots of the eqn.
t1t2=11
⇒2x12x2=11
⇒2x1+x2=11
⇒x1+x2=log211
But given sum of roots is logn(2n+7)
So, on comparing, we get n=2