The
nth term in an
AP is represented as:
an=a1+(n−1)d
where a1=1st term & d=common difference.
Second term, a2=a1+(2−1)d=a1+d−(i)
fifth term, a5=a1+(5−1)d=a1+4d−(ii)
Third term, a3=a1+(3−1)d=a1+2d−(iii)
seventh term, a7=a1+(7−1)d=a1+6d−(iv)
Now,a2+a5=8⇒a1+d+a1+4d=8[from(i)&(ii)]⇒2a1+5d=8−(v)And,a3+a7=14⇒a1+2d+a1+6d=14⇒2a1+8d=14−(vi)
Subtracting(v)from(vi)
2a1+8d=142a1+5d=83d=6⇒d=2
From(v),2a1+5×2=8⇒2a1=8−10⇒a1=−1
∴Theseriesis−1,1,3,5,7,9,11.