The sum of the series 1·32+2·52+3·72+........upto 20 terms is
188090
189080
199080
None of these
Explanation for correct option
Let S=1·32+2·52+3·72+........
S=∑r=1nr(2r+1)2⇒S=∑r=1n(4r2+1+4r)(r)⇒S=∑r=1n(4r3+r+4r2)⇒S=∑r=1n4r3+∑r=1n4r2+∑r=1nr⇒S=4∑r=1nr3+4∑r=1nr2+∑r=1nr⇒S=4n(n+1)22+4n(n+1)(2n+1)6+n(n+1)2⇒S=4n2(n+1)24+23(2n3+2n2+n2+n)+n2+n2
as we know that ∑r=1nr3=n(n+1)22,∑r=1nr2=n(n+1)(2n+1)6,∑r=1nr=n(n+1)2
Put n=20
S=(20)2(21)2+23(2×(20)3+2(20)2+(20)2+20)+(20)2+202S=400×441+23(16000+800+400+20)+400+202S=176400+11480+210S=188090
Hence, the correct option is optionA.