The correct option is B 11−x+2x(1−xn−1)(1−x)2−(2n−1)xn(1−x)
1+3x+5x2+7x2+…
The given series is an AGP with a=1, d=2, r=x, then
Sn=a1−r+dr(1−rn−1)(1−r)2−[a+(n−1)d]rn1−r
⇒Sn=11−x+2x(1−xn−1)(1−x)2−(2n−1)xn1−x
Alternate Solution:
Let Sn denote the sum of n terms of the given series. Then,
Sn=1+3x+5x2+7x3+…+(2n−3)xn−2+(2n−1)xn−1 ...(1)
xSn=x+3x2+5x3+…+(2n−3)xn−1+(2n−1)xn ...(2)
Subtracting (2) from (1), we have
Sn−xSn=1+[2x+2x2+2x3+……+2xn−1]−(2n−1)xn
⇒Sn(1−x)=1+2x(1−xn−11−x)−(2n−1)xn
⇒Sn=11−x+2x(1−xn−1)(1−x)2−(2n−1)xn1−x