The sum of the series1+23(18)+2×53×6(18)2+2×5×83×6×9(18)3+.... is
Express the exponential form with prime number as base.
(1) 4
(2) 8
(3) 16
(4) 49
(5) 81
Solve:
(i) 2−35
(ii) 4+78
(iii) 35+27
(iv) 911−415
(v) 710+25+32
(vi) 223+312
(vii) 812−358
Prove that :
(i)(√3×5−3÷3√3−1√5)×6√3×56=35(ii)932−3×50−(181)−12=15(iii)(14)−2−3×823×40+(916)−12=163(iv)212×313×41410−15×535÷343×5−754−35×6=10(v)√14+(0.01)−12−(27)23=32(vi)2n+2n−12n+1−2n=32(vii)(64125)−23+1(256625)14+(√253√64)0=6116(viii)3−3×62×√9852×3√125×(15)−43×313=28√2(ix)(0.6)0−(0.1)−1(38)−1(32)3+(13)−1=−32