The sum of the series 1+(1+2)+(1+2+3)+.......upto n terms will be
n2-2n+6
n(n+1)(2n-1)6
n2-2n-6
n(n+1)(n+2)6
Explanation for correct options
Given: 1+(1+2)+(1+2+3)+.......
Let S=1+(1+2)+(1+2+3)+.......
S=1+(1+2)+(1+2+3)+..............+(1+2+3+4+..........+n)
The last term=(1+2+3+.........+n)
=∑1nn=n(n+1)2
∴S=∑1nn(n+1)2⇒S=∑1nn22+∑1nn2⇒S=12n(n+1)(2n+1)6+12n(n+1)2⇒S=14n(n+1)2n+13+1⇒S=14n(n+1)2n+1+33⇒S=14n(n+1)2n+43⇒S=16(n)(n+1)(n+2)
Hence, OptionD is correct.
The sum of the series 1+(1+2)+(1+2+3)+...........upto n terms,will be