The correct option is A n(n+1)(n+2)6
Let Tr be the rth term of the given series. Then,
Tr=r×{n−(r−1)}
=r(n−r+1)
=r{(n+1)−r}
=(n+1)r−r2
∴S=n∑r=1Tr=n∑r=1[(n+1)r−r2]
=(n+1)(n∑r=1r)−(n∑r=1r2)
=(n+1)n(n+1)2−n(n+1)(2n+1)6
=n(n+1)(n+2)6
Alternate solution:
When n=1, then
S=1
Now, checking the options,
n(n+1)(n+2)6=1(2)(3)6=1
n(2n+1)(n+1)4=1(3)(2)4=32
n(n+1)(n+2)(n+3)6=1(2)(3)(4)6=4
n(2n+1)(n+1)(n+24=1(3)(2)(3)4=92
Hence, the correct option is n(n+1)(n+2)6