The sum of the series 3·6+4·7+5·8+....... upto n-2 terms
n3+n2+n+2
162n3+12n2+10n-84
n3+n2+n
none of these
Explanation for the correct option
Given: 3·6+4·7+5·8+....... upto n-2 terms
Let, S=3·6+4·7+5·8+.......
last term Tn=(r+2)(r+5)
=r2+7r+10
∴S=∑1n-2Tn⇒S=∑r=1n-2r2+7r+10⇒S=∑r=1n-2r2+7∑r=1n-2r+10∑r=1n-21⇒S=n-2(n-2+1)(2n-2+1)6+7n-2(n-2+1)2+10n-2⇒S=n-2(n-1)22n-33+7+10n-20⇒S=n-2(n-1)6(2n-3+21)+10n-20⇒S=n-2(n-1)6(2n+18)+10n-2⇒S=n-2(n-1)(n+9)3+10⇒S=(n-2)n2+8n-9+303⇒S=n-23n2+8n+21⇒S=n3-2n2+8n2+21n-16n-423⇒S=n3+6n2+5n-423⇒S=162n3+12n2+10n-84
Hence,OptionB is correct.