The correct option is A 3730
Let
Sn=6+13+22+33+……+Tn
Sn= 6+13+22+……+Tn−1+Tn
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯0=6+7+9+11+……+(Tn−Tn−1)−Tn
or, Tn=6+(7+9+11+……+Tn−Tn−1)
=6+(n−1)2[2×7+(n−2)2]
=6+(n−1)(n+5)
∴Tn=n2+4n+1
Now, Sn=n∑r=1Tr=n∑r=1r2+4n∑r=1r+n∑r=11
=n(n+1)(2n+1)6+2n(n+1)+n
=n(n+1)6[2n+1+12]+n=n(n+1)(2n+13)6+n
∴S20=3730