The correct option is A tan−112
We have,
cot−1(22+12)+cot−1(23+122)+cot−1(24+123)+......∞
Tn=cot−1(2n+1+12n)
=cot−1(2n+1⋅2n+12n)
=tan−1(2n(2−1)1+2n+1⋅2n)
=tan−1(2n+1−2n1+2n+1⋅2n)
Using the formula:
{tan−1x−y1+x⋅y=tan−1x−tan−1y}
=tan−12n+1−tan−12n
Putting n=1,2,3,.....,n and adding, we get
Sn=tan−12n+1−tan−12
∴S∞=tan−1∞−tan−12
=π2−tan−12
=cot−12=tan−112