T1=13=122−1T2=115=142−1T3=135=162−1T4=163=182−1
∴Tn=1(2n)2−1=1(2n+1)(2n−1)⇒Tn=12[1(2n−1)−1(2n+1)]
So, Sn=∑Tn
=12[11−13]+12[13−15]+12[15−17]
⋮ ⋮
+12[1(2n−1)−1(2n+1)]
Sn=12[1−1(2n+1)]
For very large value of denominator, value of the fraction will be ≅0
∴S∞=12