The correct option is A 446
Sn=1+94+369+10016+⋯ upto n terms
⇒Sn=13+13+231+3+13+23+331+3+5+...
Now, tn=13+23+33+....+n31+3+5+....+(2n−1)=n2(n+1)24n2=(n+1)24
⇒tn=n2+2n+14
Sn=∑nn=1tn=∑nn=1(n2+2n+14)
⇒Sn=14∑nn=1n2+12∑nn=1n+14∑nn=11
⇒Sn=n(n+1)(2n+1)24+n(n+1)4+n
⇒Sn=n(2n2+9n+13)24
⇒S16=16(2162+9.16+13)24=446
Ans: A