The correct option is A excosβsin(α+xsinβ)
We know,
cos α+isin α=eiα
Multiplying given series by i and adding terms of cos α+xcos(α+β)+x2cos(α+2β)
We develop new series
⇒cosα+xcos(α+β)......+i(sinα+xsin(α+β)+x22!........)
=eiα+xei(α+β)+x22!ei(α+2β)+x33!ei(α+3β)+.....so on
eiα(1+(xeiβ)+(xeiβ)22!+(xeeβ)33!) →
eiα(1+(xeiβ)+(xeiβ)22!+(xeeβ)33!)
Expansion of ep where p=xeiβ
=eiα(exeiβ)
The required summation is actually the imaginary part of our new series, thus comparing imaginary parts
S=Im {eiα(excosβ+ixsinβ)}=Im{excosβ⋅ei(α+xsinβ)}
=excosβsin(α+xsinβ)