wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The sum of the series nr=1(1)r1.nCr(ar) is

A
a
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
n.2n1+a
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A a
nr=1(1)r1ncr(ar)Putn=1nc1(a1)nc2(a2)+nc3(a1)+.......(1)n1ncn(an)a[nc1nc2+nc3nc4+nc5+.......ncn]nc1+2nc23nc3+4nc4.........=a[nc1nc2+nc3nc4+nc5+......][nc12nc2+3nc3+4nc4+.......](1x)n=nc0nc1x+nc2x2nc3x3.......[Accordingtothisformula]Add&subtractnc0inahaveequation&takingoutcommon(1)also.a[(nc0nc1+nc2nc3+......)+nco][nc12nc2+3nc34nc4]Putx=1(11)n=nc0nc1+nc2nc3=0So,a[0+nc0][nc12nc2+3nc34nc4+.........](i)(1+n)n=nc0+nc1x+nc2x2+nc3x3+nc4x4+.......[formula]Diff.w.r.t.n,wegetn(1+x)n1=nc1+2xnc2+3xnc3+4xnc4+....Putx=1So,x(1x)n1=nc12xnc2+3x2nc3+4nc4+.........0=nc12nc2+3nc34nc4
So, put the value in equation in (1)
=a[nc0][0]a(1)=anr=1(1)r1ncr(ar)=a

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Summation by Sigma Method
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon