The sum of the series sinθ.sec3θ + sin3θ.sec32θ + sin32θ.sec33θ + ...........n terms is
S = n∑r−1 sin3r−1θ.sec3rθ
= n∑r−1 sin3r−1θcos3rθ
=n∑r−1 2cos3r−1θ.sin3r−1θ2cos3r−1θ.cos3rθ = 12n∑r−1 sin(2.3r−1θ)cos3r−1θ.cos3rθ
= 12 n∑r−1sin3rθ.cos3rθ−cos3rθ.sin3r−1θcos3r−1θ.cos3rθ
= 12 n∑r−1(tan3rθ−tan3r−1θ)
= 12 [(tan3θ−tanθ)+(tan32θ−tan3θ)+.............+(tan3nθ−tan3n−1θ)]
= 12 [tan3nθ−tanθ]